New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nic-iimp2 | GIF version |
Description: Inference version of nic-imp 1440 using left-handed term. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-iimp2.1 | ⊢ ((φ ⊼ ψ) ⊼ (χ ⊼ χ)) |
nic-iimp2.2 | ⊢ (θ ⊼ φ) |
Ref | Expression |
---|---|
nic-iimp2 | ⊢ (θ ⊼ (χ ⊼ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-iimp2.1 | . . 3 ⊢ ((φ ⊼ ψ) ⊼ (χ ⊼ χ)) | |
2 | 1 | nic-isw1 1445 | . 2 ⊢ ((χ ⊼ χ) ⊼ (φ ⊼ ψ)) |
3 | nic-iimp2.2 | . 2 ⊢ (θ ⊼ φ) | |
4 | 2, 3 | nic-iimp1 1447 | 1 ⊢ (θ ⊼ (χ ⊼ χ)) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
This theorem is referenced by: nic-luk3 1458 |
Copyright terms: Public domain | W3C validator |