NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nic-iimp2 GIF version

Theorem nic-iimp2 1448
Description: Inference version of nic-imp 1440 using left-handed term. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nic-iimp2.1 ((φ ψ) (χ χ))
nic-iimp2.2 (θ φ)
Assertion
Ref Expression
nic-iimp2 (θ (χ χ))

Proof of Theorem nic-iimp2
StepHypRef Expression
1 nic-iimp2.1 . . 3 ((φ ψ) (χ χ))
21nic-isw1 1445 . 2 ((χ χ) (φ ψ))
3 nic-iimp2.2 . 2 (θ φ)
42, 3nic-iimp1 1447 1 (θ (χ χ))
Colors of variables: wff setvar class
Syntax hints:   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by:  nic-luk3  1458
  Copyright terms: Public domain W3C validator