NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nic-isw1 GIF version

Theorem nic-isw1 1445
Description: Inference version of nic-swap 1444. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nic-isw1.1 (θ φ)
Assertion
Ref Expression
nic-isw1 (φ θ)

Proof of Theorem nic-isw1
StepHypRef Expression
1 nic-isw1.1 . 2 (θ φ)
2 nic-swap 1444 . 2 ((θ φ) ((φ θ) (φ θ)))
31, 2nic-mp 1436 1 (φ θ)
Colors of variables: wff setvar class
Syntax hints:   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by:  nic-isw2  1446  nic-iimp1  1447  nic-iimp2  1448  nic-idel  1449  nic-ich  1450  nic-luk2  1457
  Copyright terms: Public domain W3C validator