New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nottru | GIF version |
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) |
Ref | Expression |
---|---|
nottru | ⊢ (¬ ⊤ ↔ ⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fal 1320 | . 2 ⊢ ( ⊥ ↔ ¬ ⊤ ) | |
2 | 1 | bicomi 193 | 1 ⊢ (¬ ⊤ ↔ ⊥ ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ⊤ wtru 1316 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-fal 1320 |
This theorem is referenced by: trubifal 1351 trunantru 1354 truxortru 1358 falxorfal 1361 |
Copyright terms: Public domain | W3C validator |