NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nottru GIF version

Theorem nottru 1348
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
nottru (¬ ⊤ ↔ ⊥ )

Proof of Theorem nottru
StepHypRef Expression
1 df-fal 1320 . 2 ( ⊥ ↔ ¬ ⊤ )
21bicomi 193 1 (¬ ⊤ ↔ ⊥ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wtru 1316  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-fal 1320
This theorem is referenced by:  trubifal  1351  trunantru  1354  truxortru  1358  falxorfal  1361
  Copyright terms: Public domain W3C validator