| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > trubifal | GIF version | ||
| Description: A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| trubifal | ⊢ (( ⊤ ↔ ⊥ ) ↔ ⊥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nottru 1348 | . . 3 ⊢ (¬ ⊤ ↔ ⊥ ) | |
| 2 | nbbn 347 | . . 3 ⊢ ((¬ ⊤ ↔ ⊥ ) ↔ ¬ ( ⊤ ↔ ⊥ )) | |
| 3 | 1, 2 | mpbi 199 | . 2 ⊢ ¬ ( ⊤ ↔ ⊥ ) |
| 4 | 3 | bifal 1327 | 1 ⊢ (( ⊤ ↔ ⊥ ) ↔ ⊥ ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ⊤ wtru 1316 ⊥ wfal 1317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
| This theorem is referenced by: falbitru 1352 truxorfal 1359 |
| Copyright terms: Public domain | W3C validator |