NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nsyl3 GIF version

Theorem nsyl3 111
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.)
Hypotheses
Ref Expression
nsyl3.1 (φ → ¬ ψ)
nsyl3.2 (χψ)
Assertion
Ref Expression
nsyl3 (χ → ¬ φ)

Proof of Theorem nsyl3
StepHypRef Expression
1 nsyl3.2 . 2 (χψ)
2 nsyl3.1 . . 3 (φ → ¬ ψ)
32a1i 10 . 2 (χ → (φ → ¬ ψ))
41, 3mt2d 109 1 (χ → ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  con2i  112  nsyl  113  ax9  1949  cesare  2307  cesaro  2311
  Copyright terms: Public domain W3C validator