New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nsyl3 | GIF version |
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) |
Ref | Expression |
---|---|
nsyl3.1 | ⊢ (φ → ¬ ψ) |
nsyl3.2 | ⊢ (χ → ψ) |
Ref | Expression |
---|---|
nsyl3 | ⊢ (χ → ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl3.2 | . 2 ⊢ (χ → ψ) | |
2 | nsyl3.1 | . . 3 ⊢ (φ → ¬ ψ) | |
3 | 2 | a1i 10 | . 2 ⊢ (χ → (φ → ¬ ψ)) |
4 | 1, 3 | mt2d 109 | 1 ⊢ (χ → ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con2i 112 nsyl 113 ax9 1949 cesare 2307 cesaro 2311 |
Copyright terms: Public domain | W3C validator |