NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nsyl GIF version

Theorem nsyl 113
Description: A negated syllogism inference. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 2-Mar-2013.)
Hypotheses
Ref Expression
nsyl.1 (φ → ¬ ψ)
nsyl.2 (χψ)
Assertion
Ref Expression
nsyl (φ → ¬ χ)

Proof of Theorem nsyl
StepHypRef Expression
1 nsyl.1 . . 3 (φ → ¬ ψ)
2 nsyl.2 . . 3 (χψ)
31, 2nsyl3 111 . 2 (χ → ¬ φ)
43con2i 112 1 (φ → ¬ χ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  con3i  127  intnand  882  intnanrd  883  ax12  1935  ax6  2147  ax12from12o  2156  camestres  2308  camestros  2312  calemes  2319  calemos  2322  pssn2lp  3371  0nelsuc  4401  nnsucelr  4429  tfinltfin  4502  nnadjoin  4521  funun  5147  oprssdm  5613
  Copyright terms: Public domain W3C validator