New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cesare | GIF version |
Description: "Cesare", one of the syllogisms of Aristotelian logic. No φ is ψ, and all χ is ψ, therefore no χ is φ. (In Aristotelian notation, EAE-2: PeM and SaM therefore SeP.) Related to celarent 2302. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 13-Nov-2016.) |
Ref | Expression |
---|---|
cesare.maj | ⊢ ∀x(φ → ¬ ψ) |
cesare.min | ⊢ ∀x(χ → ψ) |
Ref | Expression |
---|---|
cesare | ⊢ ∀x(χ → ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cesare.maj | . . . 4 ⊢ ∀x(φ → ¬ ψ) | |
2 | 1 | spi 1753 | . . 3 ⊢ (φ → ¬ ψ) |
3 | cesare.min | . . . 4 ⊢ ∀x(χ → ψ) | |
4 | 3 | spi 1753 | . . 3 ⊢ (χ → ψ) |
5 | 2, 4 | nsyl3 111 | . 2 ⊢ (χ → ¬ φ) |
6 | 5 | ax-gen 1546 | 1 ⊢ ∀x(χ → ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |