New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con2i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (φ → ¬ ψ) |
Ref | Expression |
---|---|
con2i | ⊢ (ψ → ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (φ → ¬ ψ) | |
2 | id 19 | . 2 ⊢ (ψ → ψ) | |
3 | 1, 2 | nsyl3 111 | 1 ⊢ (ψ → ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: nsyl 113 notnot1 114 pm2.65i 165 pm3.14 488 pclem6 896 19.8wOLD 1693 hba1w 1707 ax5o 1749 19.8a 1756 hba1OLD 1787 spimehOLD 1821 ax12olem3 1929 spime 1976 sbn 2062 spsbe 2075 hba1-o 2149 festino 2309 calemes 2319 fresison 2321 calemos 2322 fesapo 2323 necon3ai 2557 necon2bi 2563 necon4ai 2576 neneqad 2587 eueq3 3012 ssnpss 3373 psstr 3374 elndif 3391 n0i 3556 dfphi2 4570 phi011lem1 4599 |
Copyright terms: Public domain | W3C validator |