NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  orbi1 GIF version

Theorem orbi1 686
Description: Theorem *4.37 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
orbi1 ((φψ) → ((φ χ) ↔ (ψ χ)))

Proof of Theorem orbi1
StepHypRef Expression
1 id 19 . 2 ((φψ) → (φψ))
21orbi1d 683 1 ((φψ) → ((φ χ) ↔ (ψ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator