New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anbi1 | GIF version |
Description: Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
anbi1 | ⊢ ((φ ↔ ψ) → ((φ ∧ χ) ↔ (ψ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ ((φ ↔ ψ) → (φ ↔ ψ)) | |
2 | 1 | anbi1d 685 | 1 ⊢ ((φ ↔ ψ) → ((φ ∧ χ) ↔ (ψ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm5.75 903 nanbi1 1295 |
Copyright terms: Public domain | W3C validator |