New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anbi1d | GIF version |
Description: Deduction adding a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
anbi1d | ⊢ (φ → ((ψ ∧ θ) ↔ (χ ∧ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | a1d 22 | . 2 ⊢ (φ → (θ → (ψ ↔ χ))) |
3 | 2 | pm5.32rd 621 | 1 ⊢ (φ → ((ψ ∧ θ) ↔ (χ ∧ θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anbi1 687 anbi12d 691 bi2anan9 843 pm5.71 902 cador 1391 drsb1 2022 eleq1 2413 rexeqf 2805 reueq1f 2806 rmoeq1f 2807 rabeqf 2853 vtocl2gaf 2922 alexeq 2969 ceqex 2970 sbc2or 3055 sbc5 3071 rexss 3334 psstr 3374 ineq1 3451 difin2 3517 r19.28z 3643 r19.28zv 3646 ssunsn2 3866 eluni 3895 pwadjoin 4120 preq12bg 4129 elxpk 4197 opkelopkabg 4246 opkelxpkg 4248 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 opkelimagekg 4272 insklem 4305 ssfin 4471 ncfinraise 4482 evenodddisj 4517 nnpweq 4524 sfineq1 4527 vfinspss 4552 copsexg 4608 elopab 4697 setconslem6 4737 xpeq1 4799 elxpi 4801 vtoclr 4817 opbrop 4842 brswap2 4861 brco 4884 resopab2 5002 elxp4 5109 fun11 5160 feq2 5212 f1eq2 5255 f1eq3 5256 foeq2 5267 tz6.12-2 5347 dmfco 5382 respreima 5411 isoeq5 5487 isomin 5497 isoini 5498 f1oiso 5500 f1oiso2 5501 brswap 5510 oprabid 5551 dfoprab2 5559 eloprabga 5579 resoprab 5582 resoprab2 5583 ov 5596 ov3 5600 ov6g 5601 ovg 5602 mpteq12f 5656 mpt2eq123 5662 trtxp 5782 oqelins4 5795 txpcofun 5804 qrpprod 5837 dmpprod 5841 clos1eq1 5875 trd 5922 frd 5923 elpmg 6014 lecex 6116 ncspw1eu 6160 leltctr 6213 ce2le 6234 nmembers1lem1 6269 frecxp 6315 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |