NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  orbi1d GIF version

Theorem orbi1d 683
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
bid.1 (φ → (ψχ))
Assertion
Ref Expression
orbi1d (φ → ((ψ θ) ↔ (χ θ)))

Proof of Theorem orbi1d
StepHypRef Expression
1 bid.1 . . 3 (φ → (ψχ))
21orbi2d 682 . 2 (φ → ((θ ψ) ↔ (θ χ)))
3 orcom 376 . 2 ((ψ θ) ↔ (θ ψ))
4 orcom 376 . 2 ((χ θ) ↔ (θ χ))
52, 3, 43bitr4g 279 1 (φ → ((ψ θ) ↔ (χ θ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  orbi1  686  orbi12d  690  eueq2  3011  uneq1  3412  r19.45zv  3648  rexprg  3777  rextpg  3779  lefinlteq  4464
  Copyright terms: Public domain W3C validator