New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orbi1d | GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bid.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (φ → ((ψ ∨ θ) ↔ (χ ∨ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | orbi2d 682 | . 2 ⊢ (φ → ((θ ∨ ψ) ↔ (θ ∨ χ))) |
3 | orcom 376 | . 2 ⊢ ((ψ ∨ θ) ↔ (θ ∨ ψ)) | |
4 | orcom 376 | . 2 ⊢ ((χ ∨ θ) ↔ (θ ∨ χ)) | |
5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (φ → ((ψ ∨ θ) ↔ (χ ∨ θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: orbi1 686 orbi12d 690 eueq2 3011 uneq1 3412 r19.45zv 3648 rexprg 3777 rextpg 3779 lefinlteq 4464 |
Copyright terms: Public domain | W3C validator |