NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  orcd GIF version

Theorem orcd 381
Description: Deduction introducing a disjunct. A translation of natural deduction rule IR ( insertion right), see natded in set.mm. (Contributed by NM, 20-Sep-2007.)
Hypothesis
Ref Expression
orcd.1 (φψ)
Assertion
Ref Expression
orcd (φ → (ψ χ))

Proof of Theorem orcd
StepHypRef Expression
1 orcd.1 . 2 (φψ)
2 orc 374 . 2 (ψ → (ψ χ))
31, 2syl 15 1 (φ → (ψ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  olcd  382  pm2.47  388  orim12i  502  sbc2or  3055  undif3  3516  nc0le1  6217  dmfrec  6317  frec0  6322
  Copyright terms: Public domain W3C validator