New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbc2or | GIF version |
Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [A / x]φ behavior at proper classes, matching the sbc5 3071 (false) and sbc6 3073 (true) conclusions. This is interesting since dfsbcq 3049 and dfsbcq2 3050 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem doesn't tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable y that φ or A may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc2or | ⊢ (([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) ∨ ([̣A / x]̣φ ↔ ∀x(x = A → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3050 | . . . 4 ⊢ (y = A → ([y / x]φ ↔ [̣A / x]̣φ)) | |
2 | eqeq2 2362 | . . . . . 6 ⊢ (y = A → (x = y ↔ x = A)) | |
3 | 2 | anbi1d 685 | . . . . 5 ⊢ (y = A → ((x = y ∧ φ) ↔ (x = A ∧ φ))) |
4 | 3 | exbidv 1626 | . . . 4 ⊢ (y = A → (∃x(x = y ∧ φ) ↔ ∃x(x = A ∧ φ))) |
5 | sb5 2100 | . . . 4 ⊢ ([y / x]φ ↔ ∃x(x = y ∧ φ)) | |
6 | 1, 4, 5 | vtoclbg 2916 | . . 3 ⊢ (A ∈ V → ([̣A / x]̣φ ↔ ∃x(x = A ∧ φ))) |
7 | 6 | orcd 381 | . 2 ⊢ (A ∈ V → (([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) ∨ ([̣A / x]̣φ ↔ ∀x(x = A → φ)))) |
8 | pm5.15 859 | . . 3 ⊢ (([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) ∨ ([̣A / x]̣φ ↔ ¬ ∃x(x = A ∧ φ))) | |
9 | vex 2863 | . . . . . . . . . 10 ⊢ x ∈ V | |
10 | eleq1 2413 | . . . . . . . . . 10 ⊢ (x = A → (x ∈ V ↔ A ∈ V)) | |
11 | 9, 10 | mpbii 202 | . . . . . . . . 9 ⊢ (x = A → A ∈ V) |
12 | 11 | adantr 451 | . . . . . . . 8 ⊢ ((x = A ∧ φ) → A ∈ V) |
13 | 12 | con3i 127 | . . . . . . 7 ⊢ (¬ A ∈ V → ¬ (x = A ∧ φ)) |
14 | 13 | nexdv 1916 | . . . . . 6 ⊢ (¬ A ∈ V → ¬ ∃x(x = A ∧ φ)) |
15 | 11 | con3i 127 | . . . . . . . 8 ⊢ (¬ A ∈ V → ¬ x = A) |
16 | 15 | pm2.21d 98 | . . . . . . 7 ⊢ (¬ A ∈ V → (x = A → φ)) |
17 | 16 | alrimiv 1631 | . . . . . 6 ⊢ (¬ A ∈ V → ∀x(x = A → φ)) |
18 | 14, 17 | 2thd 231 | . . . . 5 ⊢ (¬ A ∈ V → (¬ ∃x(x = A ∧ φ) ↔ ∀x(x = A → φ))) |
19 | 18 | bibi2d 309 | . . . 4 ⊢ (¬ A ∈ V → (([̣A / x]̣φ ↔ ¬ ∃x(x = A ∧ φ)) ↔ ([̣A / x]̣φ ↔ ∀x(x = A → φ)))) |
20 | 19 | orbi2d 682 | . . 3 ⊢ (¬ A ∈ V → ((([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) ∨ ([̣A / x]̣φ ↔ ¬ ∃x(x = A ∧ φ))) ↔ (([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) ∨ ([̣A / x]̣φ ↔ ∀x(x = A → φ))))) |
21 | 8, 20 | mpbii 202 | . 2 ⊢ (¬ A ∈ V → (([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) ∨ ([̣A / x]̣φ ↔ ∀x(x = A → φ)))) |
22 | 7, 21 | pm2.61i 156 | 1 ⊢ (([̣A / x]̣φ ↔ ∃x(x = A ∧ φ)) ∨ ([̣A / x]̣φ ↔ ∀x(x = A → φ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 [wsb 1648 ∈ wcel 1710 Vcvv 2860 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |