| Step | Hyp | Ref
 | Expression | 
| 1 |   | elun 3221 | 
. . . 4
⊢ (x ∈ (A ∪ B)
↔ (x ∈ A  ∨ x ∈ B)) | 
| 2 |   | pm4.53 478 | 
. . . . 5
⊢ (¬ (x ∈ C ∧ ¬ x ∈ A) ↔ (¬ x ∈ C  ∨ x ∈ A)) | 
| 3 |   | eldif 3222 | 
. . . . 5
⊢ (x ∈ (C ∖ A) ↔ (x
∈ C ∧ ¬ x ∈ A)) | 
| 4 | 2, 3 | xchnxbir 300 | 
. . . 4
⊢ (¬ x ∈ (C ∖ A) ↔ (¬ x ∈ C  ∨ x ∈ A)) | 
| 5 | 1, 4 | anbi12i 678 | 
. . 3
⊢ ((x ∈ (A ∪ B) ∧ ¬ x ∈ (C ∖ A)) ↔
((x ∈
A  ∨
x ∈
B) ∧
(¬ x ∈ C  ∨ x ∈ A))) | 
| 6 |   | eldif 3222 | 
. . 3
⊢ (x ∈ ((A ∪ B) ∖ (C ∖ A)) ↔
(x ∈
(A ∪ B) ∧ ¬ x ∈ (C ∖ A))) | 
| 7 |   | elun 3221 | 
. . . 4
⊢ (x ∈ (A ∪ (B ∖ C)) ↔
(x ∈
A  ∨
x ∈
(B ∖
C))) | 
| 8 |   | eldif 3222 | 
. . . . 5
⊢ (x ∈ (B ∖ C) ↔ (x
∈ B ∧ ¬ x ∈ C)) | 
| 9 | 8 | orbi2i 505 | 
. . . 4
⊢ ((x ∈ A  ∨ x ∈ (B ∖ C)) ↔ (x
∈ A  ∨ (x ∈ B ∧ ¬ x ∈ C))) | 
| 10 |   | orc 374 | 
. . . . . . 7
⊢ (x ∈ A → (x
∈ A  ∨ x ∈ B)) | 
| 11 |   | olc 373 | 
. . . . . . 7
⊢ (x ∈ A → (¬ x ∈ C  ∨ x ∈ A)) | 
| 12 | 10, 11 | jca 518 | 
. . . . . 6
⊢ (x ∈ A → ((x
∈ A  ∨ x ∈ B) ∧ (¬ x ∈ C  ∨ x ∈ A))) | 
| 13 |   | olc 373 | 
. . . . . . 7
⊢ (x ∈ B → (x
∈ A  ∨ x ∈ B)) | 
| 14 |   | orc 374 | 
. . . . . . 7
⊢ (¬ x ∈ C → (¬ x ∈ C  ∨ x ∈ A)) | 
| 15 | 13, 14 | anim12i 549 | 
. . . . . 6
⊢ ((x ∈ B ∧ ¬ x ∈ C) → ((x
∈ A  ∨ x ∈ B) ∧ (¬ x ∈ C  ∨ x ∈ A))) | 
| 16 | 12, 15 | jaoi 368 | 
. . . . 5
⊢ ((x ∈ A  ∨ (x ∈ B ∧ ¬ x ∈ C)) → ((x
∈ A  ∨ x ∈ B) ∧ (¬ x ∈ C  ∨ x ∈ A))) | 
| 17 |   | simpl 443 | 
. . . . . . 7
⊢ ((x ∈ A ∧ ¬ x ∈ C) → x
∈ A) | 
| 18 | 17 | orcd 381 | 
. . . . . 6
⊢ ((x ∈ A ∧ ¬ x ∈ C) → (x
∈ A  ∨ (x ∈ B ∧ ¬ x ∈ C))) | 
| 19 |   | olc 373 | 
. . . . . 6
⊢ ((x ∈ B ∧ ¬ x ∈ C) → (x
∈ A  ∨ (x ∈ B ∧ ¬ x ∈ C))) | 
| 20 |   | orc 374 | 
. . . . . . 7
⊢ (x ∈ A → (x
∈ A  ∨ (x ∈ B ∧ ¬ x ∈ C))) | 
| 21 | 20 | adantr 451 | 
. . . . . 6
⊢ ((x ∈ A ∧ x ∈ A) → (x
∈ A  ∨ (x ∈ B ∧ ¬ x ∈ C))) | 
| 22 | 20 | adantl 452 | 
. . . . . 6
⊢ ((x ∈ B ∧ x ∈ A) → (x
∈ A  ∨ (x ∈ B ∧ ¬ x ∈ C))) | 
| 23 | 18, 19, 21, 22 | ccase 912 | 
. . . . 5
⊢ (((x ∈ A  ∨ x ∈ B) ∧ (¬
x ∈
C  ∨
x ∈
A)) → (x ∈ A  ∨ (x ∈ B ∧ ¬ x ∈ C))) | 
| 24 | 16, 23 | impbii 180 | 
. . . 4
⊢ ((x ∈ A  ∨ (x ∈ B ∧ ¬ x ∈ C)) ↔ ((x
∈ A  ∨ x ∈ B) ∧ (¬ x ∈ C  ∨ x ∈ A))) | 
| 25 | 7, 9, 24 | 3bitri 262 | 
. . 3
⊢ (x ∈ (A ∪ (B ∖ C)) ↔
((x ∈
A  ∨
x ∈
B) ∧
(¬ x ∈ C  ∨ x ∈ A))) | 
| 26 | 5, 6, 25 | 3bitr4ri 269 | 
. 2
⊢ (x ∈ (A ∪ (B ∖ C)) ↔
x ∈
((A ∪ B) ∖ (C ∖ A))) | 
| 27 | 26 | eqriv 2350 | 
1
⊢ (A ∪ (B ∖ C)) =
((A ∪ B) ∖ (C ∖ A)) |