Step | Hyp | Ref
| Expression |
1 | | elun 3221 |
. . . 4
⊢ (x ∈ (A ∪ B)
↔ (x ∈ A ∨ x ∈ B)) |
2 | | pm4.53 478 |
. . . . 5
⊢ (¬ (x ∈ C ∧ ¬ x ∈ A) ↔ (¬ x ∈ C ∨ x ∈ A)) |
3 | | eldif 3222 |
. . . . 5
⊢ (x ∈ (C ∖ A) ↔ (x
∈ C ∧ ¬ x ∈ A)) |
4 | 2, 3 | xchnxbir 300 |
. . . 4
⊢ (¬ x ∈ (C ∖ A) ↔ (¬ x ∈ C ∨ x ∈ A)) |
5 | 1, 4 | anbi12i 678 |
. . 3
⊢ ((x ∈ (A ∪ B) ∧ ¬ x ∈ (C ∖ A)) ↔
((x ∈
A ∨
x ∈
B) ∧
(¬ x ∈ C ∨ x ∈ A))) |
6 | | eldif 3222 |
. . 3
⊢ (x ∈ ((A ∪ B) ∖ (C ∖ A)) ↔
(x ∈
(A ∪ B) ∧ ¬ x ∈ (C ∖ A))) |
7 | | elun 3221 |
. . . 4
⊢ (x ∈ (A ∪ (B ∖ C)) ↔
(x ∈
A ∨
x ∈
(B ∖
C))) |
8 | | eldif 3222 |
. . . . 5
⊢ (x ∈ (B ∖ C) ↔ (x
∈ B ∧ ¬ x ∈ C)) |
9 | 8 | orbi2i 505 |
. . . 4
⊢ ((x ∈ A ∨ x ∈ (B ∖ C)) ↔ (x
∈ A ∨ (x ∈ B ∧ ¬ x ∈ C))) |
10 | | orc 374 |
. . . . . . 7
⊢ (x ∈ A → (x
∈ A ∨ x ∈ B)) |
11 | | olc 373 |
. . . . . . 7
⊢ (x ∈ A → (¬ x ∈ C ∨ x ∈ A)) |
12 | 10, 11 | jca 518 |
. . . . . 6
⊢ (x ∈ A → ((x
∈ A ∨ x ∈ B) ∧ (¬ x ∈ C ∨ x ∈ A))) |
13 | | olc 373 |
. . . . . . 7
⊢ (x ∈ B → (x
∈ A ∨ x ∈ B)) |
14 | | orc 374 |
. . . . . . 7
⊢ (¬ x ∈ C → (¬ x ∈ C ∨ x ∈ A)) |
15 | 13, 14 | anim12i 549 |
. . . . . 6
⊢ ((x ∈ B ∧ ¬ x ∈ C) → ((x
∈ A ∨ x ∈ B) ∧ (¬ x ∈ C ∨ x ∈ A))) |
16 | 12, 15 | jaoi 368 |
. . . . 5
⊢ ((x ∈ A ∨ (x ∈ B ∧ ¬ x ∈ C)) → ((x
∈ A ∨ x ∈ B) ∧ (¬ x ∈ C ∨ x ∈ A))) |
17 | | simpl 443 |
. . . . . . 7
⊢ ((x ∈ A ∧ ¬ x ∈ C) → x
∈ A) |
18 | 17 | orcd 381 |
. . . . . 6
⊢ ((x ∈ A ∧ ¬ x ∈ C) → (x
∈ A ∨ (x ∈ B ∧ ¬ x ∈ C))) |
19 | | olc 373 |
. . . . . 6
⊢ ((x ∈ B ∧ ¬ x ∈ C) → (x
∈ A ∨ (x ∈ B ∧ ¬ x ∈ C))) |
20 | | orc 374 |
. . . . . . 7
⊢ (x ∈ A → (x
∈ A ∨ (x ∈ B ∧ ¬ x ∈ C))) |
21 | 20 | adantr 451 |
. . . . . 6
⊢ ((x ∈ A ∧ x ∈ A) → (x
∈ A ∨ (x ∈ B ∧ ¬ x ∈ C))) |
22 | 20 | adantl 452 |
. . . . . 6
⊢ ((x ∈ B ∧ x ∈ A) → (x
∈ A ∨ (x ∈ B ∧ ¬ x ∈ C))) |
23 | 18, 19, 21, 22 | ccase 912 |
. . . . 5
⊢ (((x ∈ A ∨ x ∈ B) ∧ (¬
x ∈
C ∨
x ∈
A)) → (x ∈ A ∨ (x ∈ B ∧ ¬ x ∈ C))) |
24 | 16, 23 | impbii 180 |
. . . 4
⊢ ((x ∈ A ∨ (x ∈ B ∧ ¬ x ∈ C)) ↔ ((x
∈ A ∨ x ∈ B) ∧ (¬ x ∈ C ∨ x ∈ A))) |
25 | 7, 9, 24 | 3bitri 262 |
. . 3
⊢ (x ∈ (A ∪ (B ∖ C)) ↔
((x ∈
A ∨
x ∈
B) ∧
(¬ x ∈ C ∨ x ∈ A))) |
26 | 5, 6, 25 | 3bitr4ri 269 |
. 2
⊢ (x ∈ (A ∪ (B ∖ C)) ↔
x ∈
((A ∪ B) ∖ (C ∖ A))) |
27 | 26 | eqriv 2350 |
1
⊢ (A ∪ (B ∖ C)) =
((A ∪ B) ∖ (C ∖ A)) |