New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nc0le1 | GIF version |
Description: Any cardinal is either zero or no greater than one. Theorem XI.2.24 of [Rosser] p. 377. (Contributed by SF, 12-Mar-2015.) |
Ref | Expression |
---|---|
nc0le1 | ⊢ (N ∈ NC → (N = 0c ∨ 1c ≤c N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elncs 6120 | . 2 ⊢ (N ∈ NC ↔ ∃a N = Nc a) | |
2 | nceq 6109 | . . . . . . 7 ⊢ (a = ∅ → Nc a = Nc ∅) | |
3 | df0c2 6138 | . . . . . . 7 ⊢ 0c = Nc ∅ | |
4 | 2, 3 | syl6eqr 2403 | . . . . . 6 ⊢ (a = ∅ → Nc a = 0c) |
5 | 4 | orcd 381 | . . . . 5 ⊢ (a = ∅ → ( Nc a = 0c ∨ 1c ≤c Nc a)) |
6 | vex 2863 | . . . . . . . . . 10 ⊢ x ∈ V | |
7 | 6 | snss 3839 | . . . . . . . . 9 ⊢ (x ∈ a ↔ {x} ⊆ a) |
8 | vex 2863 | . . . . . . . . . . 11 ⊢ a ∈ V | |
9 | 8 | ncid 6124 | . . . . . . . . . 10 ⊢ a ∈ Nc a |
10 | 6 | snel1c 4141 | . . . . . . . . . 10 ⊢ {x} ∈ 1c |
11 | sseq2 3294 | . . . . . . . . . . 11 ⊢ (p = a → (q ⊆ p ↔ q ⊆ a)) | |
12 | sseq1 3293 | . . . . . . . . . . 11 ⊢ (q = {x} → (q ⊆ a ↔ {x} ⊆ a)) | |
13 | 11, 12 | rspc2ev 2964 | . . . . . . . . . 10 ⊢ ((a ∈ Nc a ∧ {x} ∈ 1c ∧ {x} ⊆ a) → ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
14 | 9, 10, 13 | mp3an12 1267 | . . . . . . . . 9 ⊢ ({x} ⊆ a → ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
15 | 7, 14 | sylbi 187 | . . . . . . . 8 ⊢ (x ∈ a → ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
16 | 15 | exlimiv 1634 | . . . . . . 7 ⊢ (∃x x ∈ a → ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
17 | n0 3560 | . . . . . . 7 ⊢ (a ≠ ∅ ↔ ∃x x ∈ a) | |
18 | 1cex 4143 | . . . . . . . . 9 ⊢ 1c ∈ V | |
19 | ncex 6118 | . . . . . . . . 9 ⊢ Nc a ∈ V | |
20 | 18, 19 | brlec 6114 | . . . . . . . 8 ⊢ (1c ≤c Nc a ↔ ∃q ∈ 1c ∃p ∈ Nc aq ⊆ p) |
21 | rexcom 2773 | . . . . . . . 8 ⊢ (∃q ∈ 1c ∃p ∈ Nc aq ⊆ p ↔ ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) | |
22 | 20, 21 | bitri 240 | . . . . . . 7 ⊢ (1c ≤c Nc a ↔ ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
23 | 16, 17, 22 | 3imtr4i 257 | . . . . . 6 ⊢ (a ≠ ∅ → 1c ≤c Nc a) |
24 | 23 | olcd 382 | . . . . 5 ⊢ (a ≠ ∅ → ( Nc a = 0c ∨ 1c ≤c Nc a)) |
25 | 5, 24 | pm2.61ine 2593 | . . . 4 ⊢ ( Nc a = 0c ∨ 1c ≤c Nc a) |
26 | eqeq1 2359 | . . . . 5 ⊢ (N = Nc a → (N = 0c ↔ Nc a = 0c)) | |
27 | breq2 4644 | . . . . 5 ⊢ (N = Nc a → (1c ≤c N ↔ 1c ≤c Nc a)) | |
28 | 26, 27 | orbi12d 690 | . . . 4 ⊢ (N = Nc a → ((N = 0c ∨ 1c ≤c N) ↔ ( Nc a = 0c ∨ 1c ≤c Nc a))) |
29 | 25, 28 | mpbiri 224 | . . 3 ⊢ (N = Nc a → (N = 0c ∨ 1c ≤c N)) |
30 | 29 | exlimiv 1634 | . 2 ⊢ (∃a N = Nc a → (N = 0c ∨ 1c ≤c N)) |
31 | 1, 30 | sylbi 187 | 1 ⊢ (N ∈ NC → (N = 0c ∨ 1c ≤c N)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∃wrex 2616 ⊆ wss 3258 ∅c0 3551 {csn 3738 1cc1c 4135 0cc0c 4375 class class class wbr 4640 NC cncs 6089 ≤c clec 6090 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-lec 6100 df-nc 6102 |
This theorem is referenced by: nc0suc 6218 leconnnc 6219 ncslemuc 6256 |
Copyright terms: Public domain | W3C validator |