NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nc0le1 GIF version

Theorem nc0le1 6217
Description: Any cardinal is either zero or no greater than one. Theorem XI.2.24 of [Rosser] p. 377. (Contributed by SF, 12-Mar-2015.)
Assertion
Ref Expression
nc0le1 (N NC → (N = 0c 1cc N))

Proof of Theorem nc0le1
Dummy variables p a q x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elncs 6120 . 2 (N NCa N = Nc a)
2 nceq 6109 . . . . . . 7 (a = Nc a = Nc )
3 df0c2 6138 . . . . . . 7 0c = Nc
42, 3syl6eqr 2403 . . . . . 6 (a = Nc a = 0c)
54orcd 381 . . . . 5 (a = → ( Nc a = 0c 1cc Nc a))
6 vex 2863 . . . . . . . . . 10 x V
76snss 3839 . . . . . . . . 9 (x a ↔ {x} a)
8 vex 2863 . . . . . . . . . . 11 a V
98ncid 6124 . . . . . . . . . 10 a Nc a
106snel1c 4141 . . . . . . . . . 10 {x} 1c
11 sseq2 3294 . . . . . . . . . . 11 (p = a → (q pq a))
12 sseq1 3293 . . . . . . . . . . 11 (q = {x} → (q a ↔ {x} a))
1311, 12rspc2ev 2964 . . . . . . . . . 10 ((a Nc a {x} 1c {x} a) → p Nc aq 1c q p)
149, 10, 13mp3an12 1267 . . . . . . . . 9 ({x} ap Nc aq 1c q p)
157, 14sylbi 187 . . . . . . . 8 (x ap Nc aq 1c q p)
1615exlimiv 1634 . . . . . . 7 (x x ap Nc aq 1c q p)
17 n0 3560 . . . . . . 7 (ax x a)
18 1cex 4143 . . . . . . . . 9 1c V
19 ncex 6118 . . . . . . . . 9 Nc a V
2018, 19brlec 6114 . . . . . . . 8 (1cc Nc aq 1c p Nc aq p)
21 rexcom 2773 . . . . . . . 8 (q 1c p Nc aq pp Nc aq 1c q p)
2220, 21bitri 240 . . . . . . 7 (1cc Nc ap Nc aq 1c q p)
2316, 17, 223imtr4i 257 . . . . . 6 (a → 1cc Nc a)
2423olcd 382 . . . . 5 (a → ( Nc a = 0c 1cc Nc a))
255, 24pm2.61ine 2593 . . . 4 ( Nc a = 0c 1cc Nc a)
26 eqeq1 2359 . . . . 5 (N = Nc a → (N = 0cNc a = 0c))
27 breq2 4644 . . . . 5 (N = Nc a → (1cc N ↔ 1cc Nc a))
2826, 27orbi12d 690 . . . 4 (N = Nc a → ((N = 0c 1cc N) ↔ ( Nc a = 0c 1cc Nc a)))
2925, 28mpbiri 224 . . 3 (N = Nc a → (N = 0c 1cc N))
3029exlimiv 1634 . 2 (a N = Nc a → (N = 0c 1cc N))
311, 30sylbi 187 1 (N NC → (N = 0c 1cc N))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357  wex 1541   = wceq 1642   wcel 1710  wne 2517  wrex 2616   wss 3258  c0 3551  {csn 3738  1cc1c 4135  0cc0c 4375   class class class wbr 4640   NC cncs 6089  c clec 6090   Nc cnc 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-lec 6100  df-nc 6102
This theorem is referenced by:  nc0suc  6218  leconnnc  6219  ncslemuc  6256
  Copyright terms: Public domain W3C validator