![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > nc0le1 | GIF version |
Description: Any cardinal is either zero or no greater than one. Theorem XI.2.24 of [Rosser] p. 377. (Contributed by SF, 12-Mar-2015.) |
Ref | Expression |
---|---|
nc0le1 | ⊢ (N ∈ NC → (N = 0c ∨ 1c ≤c N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elncs 6119 | . 2 ⊢ (N ∈ NC ↔ ∃a N = Nc a) | |
2 | nceq 6108 | . . . . . . 7 ⊢ (a = ∅ → Nc a = Nc ∅) | |
3 | df0c2 6137 | . . . . . . 7 ⊢ 0c = Nc ∅ | |
4 | 2, 3 | syl6eqr 2403 | . . . . . 6 ⊢ (a = ∅ → Nc a = 0c) |
5 | 4 | orcd 381 | . . . . 5 ⊢ (a = ∅ → ( Nc a = 0c ∨ 1c ≤c Nc a)) |
6 | vex 2862 | . . . . . . . . . 10 ⊢ x ∈ V | |
7 | 6 | snss 3838 | . . . . . . . . 9 ⊢ (x ∈ a ↔ {x} ⊆ a) |
8 | vex 2862 | . . . . . . . . . . 11 ⊢ a ∈ V | |
9 | 8 | ncid 6123 | . . . . . . . . . 10 ⊢ a ∈ Nc a |
10 | 6 | snel1c 4140 | . . . . . . . . . 10 ⊢ {x} ∈ 1c |
11 | sseq2 3293 | . . . . . . . . . . 11 ⊢ (p = a → (q ⊆ p ↔ q ⊆ a)) | |
12 | sseq1 3292 | . . . . . . . . . . 11 ⊢ (q = {x} → (q ⊆ a ↔ {x} ⊆ a)) | |
13 | 11, 12 | rspc2ev 2963 | . . . . . . . . . 10 ⊢ ((a ∈ Nc a ∧ {x} ∈ 1c ∧ {x} ⊆ a) → ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
14 | 9, 10, 13 | mp3an12 1267 | . . . . . . . . 9 ⊢ ({x} ⊆ a → ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
15 | 7, 14 | sylbi 187 | . . . . . . . 8 ⊢ (x ∈ a → ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
16 | 15 | exlimiv 1634 | . . . . . . 7 ⊢ (∃x x ∈ a → ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
17 | n0 3559 | . . . . . . 7 ⊢ (a ≠ ∅ ↔ ∃x x ∈ a) | |
18 | 1cex 4142 | . . . . . . . . 9 ⊢ 1c ∈ V | |
19 | ncex 6117 | . . . . . . . . 9 ⊢ Nc a ∈ V | |
20 | 18, 19 | brlec 6113 | . . . . . . . 8 ⊢ (1c ≤c Nc a ↔ ∃q ∈ 1c ∃p ∈ Nc aq ⊆ p) |
21 | rexcom 2772 | . . . . . . . 8 ⊢ (∃q ∈ 1c ∃p ∈ Nc aq ⊆ p ↔ ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) | |
22 | 20, 21 | bitri 240 | . . . . . . 7 ⊢ (1c ≤c Nc a ↔ ∃p ∈ Nc a∃q ∈ 1c q ⊆ p) |
23 | 16, 17, 22 | 3imtr4i 257 | . . . . . 6 ⊢ (a ≠ ∅ → 1c ≤c Nc a) |
24 | 23 | olcd 382 | . . . . 5 ⊢ (a ≠ ∅ → ( Nc a = 0c ∨ 1c ≤c Nc a)) |
25 | 5, 24 | pm2.61ine 2592 | . . . 4 ⊢ ( Nc a = 0c ∨ 1c ≤c Nc a) |
26 | eqeq1 2359 | . . . . 5 ⊢ (N = Nc a → (N = 0c ↔ Nc a = 0c)) | |
27 | breq2 4643 | . . . . 5 ⊢ (N = Nc a → (1c ≤c N ↔ 1c ≤c Nc a)) | |
28 | 26, 27 | orbi12d 690 | . . . 4 ⊢ (N = Nc a → ((N = 0c ∨ 1c ≤c N) ↔ ( Nc a = 0c ∨ 1c ≤c Nc a))) |
29 | 25, 28 | mpbiri 224 | . . 3 ⊢ (N = Nc a → (N = 0c ∨ 1c ≤c N)) |
30 | 29 | exlimiv 1634 | . 2 ⊢ (∃a N = Nc a → (N = 0c ∨ 1c ≤c N)) |
31 | 1, 30 | sylbi 187 | 1 ⊢ (N ∈ NC → (N = 0c ∨ 1c ≤c N)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ≠ wne 2516 ∃wrex 2615 ⊆ wss 3257 ∅c0 3550 {csn 3737 1cc1c 4134 0cc0c 4374 class class class wbr 4639 NC cncs 6088 ≤c clec 6089 Nc cnc 6091 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-2nd 4797 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-ec 5947 df-qs 5951 df-en 6029 df-ncs 6098 df-lec 6099 df-nc 6101 |
This theorem is referenced by: nc0suc 6217 leconnnc 6218 ncslemuc 6255 |
Copyright terms: Public domain | W3C validator |