| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > oridm | GIF version | ||
| Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
| Ref | Expression |
|---|---|
| oridm | ⊢ ((φ ∨ φ) ↔ φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.2 499 | . 2 ⊢ ((φ ∨ φ) → φ) | |
| 2 | pm2.07 385 | . 2 ⊢ (φ → (φ ∨ φ)) | |
| 3 | 1, 2 | impbii 180 | 1 ⊢ ((φ ∨ φ) ↔ φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: pm4.25 501 orordi 516 orordir 517 truortru 1340 falorfal 1343 unidm 3408 |
| Copyright terms: Public domain | W3C validator |