NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  orordir GIF version

Theorem orordir 517
Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
Assertion
Ref Expression
orordir (((φ ψ) χ) ↔ ((φ χ) (ψ χ)))

Proof of Theorem orordir
StepHypRef Expression
1 oridm 500 . . 3 ((χ χ) ↔ χ)
21orbi2i 505 . 2 (((φ ψ) (χ χ)) ↔ ((φ ψ) χ))
3 or4 514 . 2 (((φ ψ) (χ χ)) ↔ ((φ χ) (ψ χ)))
42, 3bitr3i 242 1 (((φ ψ) χ) ↔ ((φ χ) (ψ χ)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  sspsstri  3372
  Copyright terms: Public domain W3C validator