| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > orordir | GIF version | ||
| Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.) |
| Ref | Expression |
|---|---|
| orordir | ⊢ (((φ ∨ ψ) ∨ χ) ↔ ((φ ∨ χ) ∨ (ψ ∨ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 500 | . . 3 ⊢ ((χ ∨ χ) ↔ χ) | |
| 2 | 1 | orbi2i 505 | . 2 ⊢ (((φ ∨ ψ) ∨ (χ ∨ χ)) ↔ ((φ ∨ ψ) ∨ χ)) |
| 3 | or4 514 | . 2 ⊢ (((φ ∨ ψ) ∨ (χ ∨ χ)) ↔ ((φ ∨ χ) ∨ (ψ ∨ χ))) | |
| 4 | 2, 3 | bitr3i 242 | 1 ⊢ (((φ ∨ ψ) ∨ χ) ↔ ((φ ∨ χ) ∨ (ψ ∨ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: sspsstri 3372 |
| Copyright terms: Public domain | W3C validator |