New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orordir | GIF version |
Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.) |
Ref | Expression |
---|---|
orordir | ⊢ (((φ ∨ ψ) ∨ χ) ↔ ((φ ∨ χ) ∨ (ψ ∨ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 500 | . . 3 ⊢ ((χ ∨ χ) ↔ χ) | |
2 | 1 | orbi2i 505 | . 2 ⊢ (((φ ∨ ψ) ∨ (χ ∨ χ)) ↔ ((φ ∨ ψ) ∨ χ)) |
3 | or4 514 | . 2 ⊢ (((φ ∨ ψ) ∨ (χ ∨ χ)) ↔ ((φ ∨ χ) ∨ (ψ ∨ χ))) | |
4 | 2, 3 | bitr3i 242 | 1 ⊢ (((φ ∨ ψ) ∨ χ) ↔ ((φ ∨ χ) ∨ (ψ ∨ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: sspsstri 3372 |
Copyright terms: Public domain | W3C validator |