NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unidm GIF version

Theorem unidm 3408
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
unidm (AA) = A

Proof of Theorem unidm
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 oridm 500 . 2 ((x A x A) ↔ x A)
21uneqri 3407 1 (AA) = A
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  cun 3208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215
This theorem is referenced by:  unundi  3425  unundir  3426  uneqin  3507  difabs  3519  undifabs  3628  dfif5  3675  dfsn2  3748  diftpsn3  3850  unisn  3908
  Copyright terms: Public domain W3C validator