NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  orim2d GIF version

Theorem orim2d 813
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (φ → (ψχ))
Assertion
Ref Expression
orim2d (φ → ((θ ψ) → (θ χ)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2 (φ → (θθ))
2 orim1d.1 . 2 (φ → (ψχ))
31, 2orim12d 811 1 (φ → ((θ ψ) → (θ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  orim2  814  pm2.82  825
  Copyright terms: Public domain W3C validator