New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > idd | GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
idd | ⊢ (φ → (ψ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (ψ → ψ) | |
2 | 1 | a1i 10 | 1 ⊢ (φ → (ψ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 69 simprim 142 pm2.6 162 pm2.65 164 orel2 372 pm2.621 397 simpr 447 ancld 536 ancrd 537 anim12d 546 anim1d 547 anim2d 548 pm2.63 763 orim1d 812 orim2d 813 ecase2d 906 cad0 1400 merco2 1501 spnfw 1670 19.2OLD 1700 r19.36av 2760 r19.44av 2768 r19.45av 2769 eqsbc2 3104 reuss 3537 funiunfv 5468 |
Copyright terms: Public domain | W3C validator |