NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.18da GIF version

Theorem pm2.18da 430
Description: Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
pm2.18da.1 ((φ ¬ ψ) → ψ)
Assertion
Ref Expression
pm2.18da (φψ)

Proof of Theorem pm2.18da
StepHypRef Expression
1 pm2.18da.1 . . 3 ((φ ¬ ψ) → ψ)
21ex 423 . 2 (φ → (¬ ψψ))
32pm2.18d 103 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator