NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.18d GIF version

Theorem pm2.18d 103
Description: Deduction based on reductio ad absurdum. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypothesis
Ref Expression
pm2.18d.1 (φ → (¬ ψψ))
Assertion
Ref Expression
pm2.18d (φψ)

Proof of Theorem pm2.18d
StepHypRef Expression
1 pm2.18d.1 . 2 (φ → (¬ ψψ))
2 pm2.18 102 . 2 ((¬ ψψ) → ψ)
31, 2syl 15 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  notnot2  104  pm2.61d  150  pm2.18da  430  oplem1  930  ax10lem4  1941  phi11lem1  4596  0cnelphi  4598
  Copyright terms: Public domain W3C validator