NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm3.3 GIF version

Theorem pm3.3 431
Description: Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.3 (((φ ψ) → χ) → (φ → (ψχ)))

Proof of Theorem pm3.3
StepHypRef Expression
1 id 19 . 2 (((φ ψ) → χ) → ((φ ψ) → χ))
21exp3a 425 1 (((φ ψ) → χ) → (φ → (ψχ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  impexp  433  pm4.79  566
  Copyright terms: Public domain W3C validator