NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  orim2i GIF version

Theorem orim2i 504
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (φψ)
Assertion
Ref Expression
orim2i ((χ φ) → (χ ψ))

Proof of Theorem orim2i
StepHypRef Expression
1 id 19 . 2 (χχ)
2 orim1i.1 . 2 (φψ)
31, 2orim12i 502 1 ((χ φ) → (χ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  orbi2i  505  pm1.5  508  pm2.3  555  r19.44av  2768
  Copyright terms: Public domain W3C validator