| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm2.74 | GIF version | ||
| Description: Theorem *2.74 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| pm2.74 | ⊢ ((ψ → φ) → (((φ ∨ ψ) ∨ χ) → (φ ∨ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orel2 372 | . . 3 ⊢ (¬ ψ → ((φ ∨ ψ) → φ)) | |
| 2 | ax-1 6 | . . 3 ⊢ (φ → ((φ ∨ ψ) → φ)) | |
| 3 | 1, 2 | ja 153 | . 2 ⊢ ((ψ → φ) → ((φ ∨ ψ) → φ)) |
| 4 | 3 | orim1d 812 | 1 ⊢ ((ψ → φ) → (((φ ∨ ψ) ∨ χ) → (φ ∨ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |