NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.81 GIF version

Theorem pm2.81 824
Description: Theorem *2.81 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.81 ((ψ → (χθ)) → ((φ ψ) → ((φ χ) → (φ θ))))

Proof of Theorem pm2.81
StepHypRef Expression
1 orim2 814 . 2 ((ψ → (χθ)) → ((φ ψ) → (φ (χθ))))
2 pm2.76 821 . 2 ((φ (χθ)) → ((φ χ) → (φ θ)))
31, 2syl6 29 1 ((ψ → (χθ)) → ((φ ψ) → ((φ χ) → (φ θ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator