New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6 | GIF version |
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Jul-2012.) |
Ref | Expression |
---|---|
syl6.1 | ⊢ (φ → (ψ → χ)) |
syl6.2 | ⊢ (χ → θ) |
Ref | Expression |
---|---|
syl6 | ⊢ (φ → (ψ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6.1 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | syl6.2 | . . 3 ⊢ (χ → θ) | |
3 | 2 | a1i 10 | . 2 ⊢ (ψ → (χ → θ)) |
4 | 1, 3 | sylcom 25 | 1 ⊢ (φ → (ψ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl56 30 syl6com 31 a1dd 42 syl6mpi 58 syl6c 60 com34 77 con1d 116 expi 141 looinv 174 syl6ib 217 syl6ibr 218 syl6bi 219 syl6bir 220 jaoi 368 pm2.37 817 pm2.81 824 oplem1 930 3jao 1243 ee12an 1363 ee23 1364 exlimdv 1636 spimfw 1646 hbald 1740 sp 1747 spOLD 1748 19.23t 1800 hbimdOLD 1816 nfaldOLD 1853 19.21tOLD 1863 ax12olem1 1927 ax12olem2 1928 ax10lem2 1937 ax10lem4 1941 ax10 1944 a16g 1945 spimt 1974 cbv1h 1978 cbv2h 1980 equvini 1987 sbft 2025 sbied 2036 sb3 2052 dfsb2 2055 hbsb2 2057 sbn 2062 sbi1 2063 sb9i 2094 sbal1 2126 aev-o 2182 ax11eq 2193 ax11el 2194 ax11indn 2195 ax11indi 2196 mo 2226 moexex 2273 2mo 2282 2eu1 2284 dvelimdc 2510 rsp2 2677 rgen2a 2681 mo2icl 3016 reu6 3026 reupick2 3542 pwpw0 3856 sssn 3865 pwsnALT 3883 dfiun2g 4000 iotaval 4351 nnsucelr 4429 nndisjeq 4430 ltfintri 4467 tfin11 4494 tfinnn 4535 vfinspss 4552 copsexg 4608 opelopabt 4700 xpcan 5058 xpcan2 5059 fun11iun 5306 fv3 5342 chfnrn 5400 dff3 5421 ffnfv 5428 fconstfv 5457 funsi 5521 oprabid 5551 mpt2eq123 5662 fundmen 6044 enmap2lem4 6067 enmap1lem4 6073 enprmaplem5 6081 leconnnc 6219 addceq0 6220 ncslesuc 6268 nchoicelem6 6295 nchoicelem12 6301 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |