NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm3.43 GIF version

Theorem pm3.43 832
Description: Theorem *3.43 (Comp) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.43 (((φψ) (φχ)) → (φ → (ψ χ)))

Proof of Theorem pm3.43
StepHypRef Expression
1 pm3.43i 442 . 2 ((φψ) → ((φχ) → (φ → (ψ χ))))
21imp 418 1 (((φψ) (φχ)) → (φ → (ψ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  jcab  833  eqvinc  2967
  Copyright terms: Public domain W3C validator