New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqvinc | GIF version |
Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
eqvinc.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
eqvinc | ⊢ (A = B ↔ ∃x(x = A ∧ x = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvinc.1 | . . . . 5 ⊢ A ∈ V | |
2 | 1 | isseti 2866 | . . . 4 ⊢ ∃x x = A |
3 | ax-1 6 | . . . . . 6 ⊢ (x = A → (A = B → x = A)) | |
4 | eqtr 2370 | . . . . . . 7 ⊢ ((x = A ∧ A = B) → x = B) | |
5 | 4 | ex 423 | . . . . . 6 ⊢ (x = A → (A = B → x = B)) |
6 | 3, 5 | jca 518 | . . . . 5 ⊢ (x = A → ((A = B → x = A) ∧ (A = B → x = B))) |
7 | 6 | eximi 1576 | . . . 4 ⊢ (∃x x = A → ∃x((A = B → x = A) ∧ (A = B → x = B))) |
8 | pm3.43 832 | . . . . 5 ⊢ (((A = B → x = A) ∧ (A = B → x = B)) → (A = B → (x = A ∧ x = B))) | |
9 | 8 | eximi 1576 | . . . 4 ⊢ (∃x((A = B → x = A) ∧ (A = B → x = B)) → ∃x(A = B → (x = A ∧ x = B))) |
10 | 2, 7, 9 | mp2b 9 | . . 3 ⊢ ∃x(A = B → (x = A ∧ x = B)) |
11 | 10 | 19.37aiv 1900 | . 2 ⊢ (A = B → ∃x(x = A ∧ x = B)) |
12 | eqtr2 2371 | . . 3 ⊢ ((x = A ∧ x = B) → A = B) | |
13 | 12 | exlimiv 1634 | . 2 ⊢ (∃x(x = A ∧ x = B) → A = B) |
14 | 11, 13 | impbii 180 | 1 ⊢ (A = B ↔ ∃x(x = A ∧ x = B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: eqvincf 2968 preaddccan2lem1 4455 dff13 5472 nncdiv3lem1 6276 |
Copyright terms: Public domain | W3C validator |