| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > jcab | GIF version | ||
| Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| jcab | ⊢ ((φ → (ψ ∧ χ)) ↔ ((φ → ψ) ∧ (φ → χ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 443 | . . . 4 ⊢ ((ψ ∧ χ) → ψ) | |
| 2 | 1 | imim2i 13 | . . 3 ⊢ ((φ → (ψ ∧ χ)) → (φ → ψ)) | 
| 3 | simpr 447 | . . . 4 ⊢ ((ψ ∧ χ) → χ) | |
| 4 | 3 | imim2i 13 | . . 3 ⊢ ((φ → (ψ ∧ χ)) → (φ → χ)) | 
| 5 | 2, 4 | jca 518 | . 2 ⊢ ((φ → (ψ ∧ χ)) → ((φ → ψ) ∧ (φ → χ))) | 
| 6 | pm3.43 832 | . 2 ⊢ (((φ → ψ) ∧ (φ → χ)) → (φ → (ψ ∧ χ))) | |
| 7 | 5, 6 | impbii 180 | 1 ⊢ ((φ → (ψ ∧ χ)) ↔ ((φ → ψ) ∧ (φ → χ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: ordi 834 pm4.76 836 pm5.44 877 2eu4 2287 ssconb 3400 ssin 3478 | 
| Copyright terms: Public domain | W3C validator |