| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > jaob | GIF version | ||
| Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-May-1994.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) | 
| Ref | Expression | 
|---|---|
| jaob | ⊢ (((φ ∨ χ) → ψ) ↔ ((φ → ψ) ∧ (χ → ψ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.67-2 391 | . . 3 ⊢ (((φ ∨ χ) → ψ) → (φ → ψ)) | |
| 2 | olc 373 | . . . 4 ⊢ (χ → (φ ∨ χ)) | |
| 3 | 2 | imim1i 54 | . . 3 ⊢ (((φ ∨ χ) → ψ) → (χ → ψ)) | 
| 4 | 1, 3 | jca 518 | . 2 ⊢ (((φ ∨ χ) → ψ) → ((φ → ψ) ∧ (χ → ψ))) | 
| 5 | pm3.44 497 | . 2 ⊢ (((φ → ψ) ∧ (χ → ψ)) → ((φ ∨ χ) → ψ)) | |
| 6 | 4, 5 | impbii 180 | 1 ⊢ (((φ ∨ χ) → ψ) ↔ ((φ → ψ) ∧ (χ → ψ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: pm4.77 762 pm5.53 771 pm4.83 895 unss 3438 ralunb 3445 intun 3959 intpr 3960 | 
| Copyright terms: Public domain | W3C validator |