NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm3.48 GIF version

Theorem pm3.48 806
Description: Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.)
Assertion
Ref Expression
pm3.48 (((φψ) (χθ)) → ((φ χ) → (ψ θ)))

Proof of Theorem pm3.48
StepHypRef Expression
1 orc 374 . . 3 (ψ → (ψ θ))
21imim2i 13 . 2 ((φψ) → (φ → (ψ θ)))
3 olc 373 . . 3 (θ → (ψ θ))
43imim2i 13 . 2 ((χθ) → (χ → (ψ θ)))
52, 4jaao 495 1 (((φψ) (χθ)) → ((φ χ) → (ψ θ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  orim12d  811
  Copyright terms: Public domain W3C validator