| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm3.48 | GIF version | ||
| Description: Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.) |
| Ref | Expression |
|---|---|
| pm3.48 | ⊢ (((φ → ψ) ∧ (χ → θ)) → ((φ ∨ χ) → (ψ ∨ θ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 374 | . . 3 ⊢ (ψ → (ψ ∨ θ)) | |
| 2 | 1 | imim2i 13 | . 2 ⊢ ((φ → ψ) → (φ → (ψ ∨ θ))) |
| 3 | olc 373 | . . 3 ⊢ (θ → (ψ ∨ θ)) | |
| 4 | 3 | imim2i 13 | . 2 ⊢ ((χ → θ) → (χ → (ψ ∨ θ))) |
| 5 | 2, 4 | jaao 495 | 1 ⊢ (((φ → ψ) ∧ (χ → θ)) → ((φ ∨ χ) → (ψ ∨ θ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: orim12d 811 |
| Copyright terms: Public domain | W3C validator |