New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imim2i | GIF version |
Description: Inference adding common antecedents in an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imim2i.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
imim2i | ⊢ ((χ → φ) → (χ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | a1i 10 | . 2 ⊢ (χ → (φ → ψ)) |
3 | 2 | a2i 12 | 1 ⊢ ((χ → φ) → (χ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 53 imim3i 55 ja 153 imim21b 356 pm3.48 806 jcab 833 exbir 1365 nic-ax 1438 nic-axALT 1439 tbw-bijust 1463 merco1 1478 sbimi 1652 19.24 1662 nfimdOLD 1809 19.21hOLD 1840 19.21tOLD 1863 ax12olem3 1929 ax11indi 2196 mopick 2266 axi5r 2326 r19.36av 2760 ceqsalt 2882 vtoclgft 2906 spcgft 2932 mo2icl 3016 euind 3024 reu6 3026 reuind 3040 sbciegft 3077 dfiin2g 4001 nncaddccl 4420 fnoprabg 5586 |
Copyright terms: Public domain | W3C validator |