New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.39 | GIF version |
Description: Theorem *4.39 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.39 | ⊢ (((φ ↔ χ) ∧ (ψ ↔ θ)) → ((φ ∨ ψ) ↔ (χ ∨ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ (((φ ↔ χ) ∧ (ψ ↔ θ)) → (φ ↔ χ)) | |
2 | simpr 447 | . 2 ⊢ (((φ ↔ χ) ∧ (ψ ↔ θ)) → (ψ ↔ θ)) | |
3 | 1, 2 | orbi12d 690 | 1 ⊢ (((φ ↔ χ) ∧ (ψ ↔ θ)) → ((φ ∨ ψ) ↔ (χ ∨ θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |