New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orbi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of disjunctions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bi12d.1 | ⊢ (φ → (ψ ↔ χ)) |
bi12d.2 | ⊢ (φ → (θ ↔ τ)) |
Ref | Expression |
---|---|
orbi12d | ⊢ (φ → ((ψ ∨ θ) ↔ (χ ∨ τ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi12d.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | orbi1d 683 | . 2 ⊢ (φ → ((ψ ∨ θ) ↔ (χ ∨ θ))) |
3 | bi12d.2 | . . 3 ⊢ (φ → (θ ↔ τ)) | |
4 | 3 | orbi2d 682 | . 2 ⊢ (φ → ((χ ∨ θ) ↔ (χ ∨ τ))) |
5 | 2, 4 | bitrd 244 | 1 ⊢ (φ → ((ψ ∨ θ) ↔ (χ ∨ τ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: pm4.39 841 3orbi123d 1251 cadbi123d 1383 eueq3 3012 sbcor 3091 sbcorg 3092 elprg 3751 eltpg 3770 preq12bg 4129 nnc0suc 4413 nndisjeq 4430 lefinlteq 4464 evenodddisjlem1 4516 fununi 5161 funcnvuni 5162 fun11iun 5306 unpreima 5409 clos1basesuc 5883 clos1basesucg 5885 connexrd 5931 connexd 5932 qsdisj 5996 ncdisjeq 6149 nc0le1 6217 leconnnc 6219 muc0or 6253 nchoicelem9 6298 nchoicelem16 6305 nchoicelem17 6306 nchoice 6309 |
Copyright terms: Public domain | W3C validator |