New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simpr | GIF version |
Description: Elimination of a conjunct. Theorem *3.27 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) |
Ref | Expression |
---|---|
simpr | ⊢ ((φ ∧ ψ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (φ → (ψ → ψ)) | |
2 | 1 | imp 418 | 1 ⊢ ((φ ∧ ψ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simpri 448 adantld 453 ibar 490 pm3.42 543 pm3.4 544 prth 554 sylancom 648 adantll 694 adantrl 696 adantlll 698 adantlrl 700 adantrll 702 adantrrl 704 simpllr 735 simplrr 737 simprlr 739 simprrr 741 anabs7 785 jcab 833 pm4.39 841 pm4.38 842 intnan 880 intnand 882 bimsc1 904 niabn 917 dedlem0b 919 simp1r 980 simp2r 982 simp3r 984 3anandirs 1284 truan 1331 cadan 1392 19.26 1593 19.40 1609 sbft 2025 moan 2255 euan 2261 datisi 2313 fresison 2321 pm2.61da3ne 2597 rexex 2674 r19.26 2747 r19.40 2763 cbvraldva2 2840 cbvrexdva2 2841 gencbvex 2902 rspct 2949 rspcimdv 2957 rr19.28v 2982 reu6 3026 rmob 3135 csbiebt 3173 rabssab 3353 difrab 3530 dfnfc2 3910 intmin4 3956 iota2df 4366 iota2 4368 0nelsuc 4401 nndisjeq 4430 ltfinp1 4463 lenltfin 4470 ncfineleq 4478 evenodddisj 4517 nnadjoin 4521 tfinnn 4535 vfintle 4547 vfinspsslem1 4551 dfphi2 4570 phi11lem1 4596 ideqg 4869 imassrn 5010 xpcan 5058 funopab4 5142 fun11uni 5163 fvelrn 5414 dffo3 5423 ffvresb 5432 eqfnov2 5591 weds 5939 ersymb 5954 erref 5960 elnc 6126 eqncg 6127 ncdisjun 6137 peano4nc 6151 eqtc 6162 leconnnc 6219 taddc 6230 lemuc1 6254 addccan2nc 6266 nchoicelem6 6295 nchoicelem8 6297 nchoicelem17 6306 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |