| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm4.65 | GIF version | ||
| Description: Theorem *4.65 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm4.65 | ⊢ (¬ (¬ φ → ψ) ↔ (¬ φ ∧ ¬ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm4.61 415 | 1 ⊢ (¬ (¬ φ → ψ) ↔ (¬ φ ∧ ¬ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: ioran 476 | 
| Copyright terms: Public domain | W3C validator |