New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.61 | GIF version |
Description: Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.61 | ⊢ (¬ (φ → ψ) ↔ (φ ∧ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim 414 | . 2 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) | |
2 | 1 | bicomi 193 | 1 ⊢ (¬ (φ → ψ) ↔ (φ ∧ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm4.65 416 npss 3380 difin 3493 |
Copyright terms: Public domain | W3C validator |