NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ioran GIF version

Theorem ioran 476
Description: Negated disjunction in terms of conjunction (De Morgan's law). Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
ioran (¬ (φ ψ) ↔ (¬ φ ¬ ψ))

Proof of Theorem ioran
StepHypRef Expression
1 pm4.65 416 . 2 (¬ (¬ φψ) ↔ (¬ φ ¬ ψ))
2 pm4.64 361 . 2 ((¬ φψ) ↔ (φ ψ))
31, 2xchnxbi 299 1 (¬ (φ ψ) ↔ (¬ φ ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  pm4.56  481  oibabs  851  xor  861  3ioran  950  3ori  1242  ecase23d  1285  19.43OLD  1606  equvini  1987  2ralor  2781  dfun2  3491  sfin111  4537  nchoice  6309
  Copyright terms: Public domain W3C validator