New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.501 | GIF version |
Description: Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.501 | ⊢ (φ → (ψ ↔ (φ ↔ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.1im 229 | . 2 ⊢ (φ → (ψ → (φ ↔ ψ))) | |
2 | bi1 178 | . . 3 ⊢ ((φ ↔ ψ) → (φ → ψ)) | |
3 | 2 | com12 27 | . 2 ⊢ (φ → ((φ ↔ ψ) → ψ)) |
4 | 1, 3 | impbid 183 | 1 ⊢ (φ → (ψ ↔ (φ ↔ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: ibib 331 ibibr 332 nbn2 334 pm5.18 345 biass 348 pm5.1 830 |
Copyright terms: Public domain | W3C validator |