New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.18 | GIF version |
Description: Theorem *5.18 of [WhiteheadRussell] p. 124. This theorem says that logical equivalence is the same as negated "exclusive-or." (Contributed by NM, 28-Jun-2002.) (Proof shortened by Andrew Salmon, 20-Jun-2011.) (Proof shortened by Wolf Lammen, 15-Oct-2013.) |
Ref | Expression |
---|---|
pm5.18 | ⊢ ((φ ↔ ψ) ↔ ¬ (φ ↔ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 330 | . . . 4 ⊢ (φ → (¬ ψ ↔ (φ ↔ ¬ ψ))) | |
2 | 1 | con1bid 320 | . . 3 ⊢ (φ → (¬ (φ ↔ ¬ ψ) ↔ ψ)) |
3 | pm5.501 330 | . . 3 ⊢ (φ → (ψ ↔ (φ ↔ ψ))) | |
4 | 2, 3 | bitr2d 245 | . 2 ⊢ (φ → ((φ ↔ ψ) ↔ ¬ (φ ↔ ¬ ψ))) |
5 | nbn2 334 | . . . 4 ⊢ (¬ φ → (¬ ¬ ψ ↔ (φ ↔ ¬ ψ))) | |
6 | 5 | con1bid 320 | . . 3 ⊢ (¬ φ → (¬ (φ ↔ ¬ ψ) ↔ ¬ ψ)) |
7 | nbn2 334 | . . 3 ⊢ (¬ φ → (¬ ψ ↔ (φ ↔ ψ))) | |
8 | 6, 7 | bitr2d 245 | . 2 ⊢ (¬ φ → ((φ ↔ ψ) ↔ ¬ (φ ↔ ¬ ψ))) |
9 | 4, 8 | pm2.61i 156 | 1 ⊢ ((φ ↔ ψ) ↔ ¬ (φ ↔ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: xor3 346 pm5.19 349 pm5.16 860 dfbi3 863 xorass 1308 |
Copyright terms: Public domain | W3C validator |