NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.18 GIF version

Theorem pm5.18 345
Description: Theorem *5.18 of [WhiteheadRussell] p. 124. This theorem says that logical equivalence is the same as negated "exclusive-or." (Contributed by NM, 28-Jun-2002.) (Proof shortened by Andrew Salmon, 20-Jun-2011.) (Proof shortened by Wolf Lammen, 15-Oct-2013.)
Assertion
Ref Expression
pm5.18 ((φψ) ↔ ¬ (φ ↔ ¬ ψ))

Proof of Theorem pm5.18
StepHypRef Expression
1 pm5.501 330 . . . 4 (φ → (¬ ψ ↔ (φ ↔ ¬ ψ)))
21con1bid 320 . . 3 (φ → (¬ (φ ↔ ¬ ψ) ↔ ψ))
3 pm5.501 330 . . 3 (φ → (ψ ↔ (φψ)))
42, 3bitr2d 245 . 2 (φ → ((φψ) ↔ ¬ (φ ↔ ¬ ψ)))
5 nbn2 334 . . . 4 φ → (¬ ¬ ψ ↔ (φ ↔ ¬ ψ)))
65con1bid 320 . . 3 φ → (¬ (φ ↔ ¬ ψ) ↔ ¬ ψ))
7 nbn2 334 . . 3 φ → (¬ ψ ↔ (φψ)))
86, 7bitr2d 245 . 2 φ → ((φψ) ↔ ¬ (φ ↔ ¬ ψ)))
94, 8pm2.61i 156 1 ((φψ) ↔ ¬ (φ ↔ ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  xor3  346  pm5.19  349  pm5.16  860  dfbi3  863  xorass  1308
  Copyright terms: Public domain W3C validator