New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biass | GIF version |
Description: Associative law for the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805. Interestingly, this law was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by NM, 8-Jan-2005.) (Proof shortened by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 21-Sep-2013.) |
Ref | Expression |
---|---|
biass | ⊢ (((φ ↔ ψ) ↔ χ) ↔ (φ ↔ (ψ ↔ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 330 | . . . 4 ⊢ (φ → (ψ ↔ (φ ↔ ψ))) | |
2 | 1 | bibi1d 310 | . . 3 ⊢ (φ → ((ψ ↔ χ) ↔ ((φ ↔ ψ) ↔ χ))) |
3 | pm5.501 330 | . . 3 ⊢ (φ → ((ψ ↔ χ) ↔ (φ ↔ (ψ ↔ χ)))) | |
4 | 2, 3 | bitr3d 246 | . 2 ⊢ (φ → (((φ ↔ ψ) ↔ χ) ↔ (φ ↔ (ψ ↔ χ)))) |
5 | nbbn 347 | . . . 4 ⊢ ((¬ ψ ↔ χ) ↔ ¬ (ψ ↔ χ)) | |
6 | nbn2 334 | . . . . 5 ⊢ (¬ φ → (¬ ψ ↔ (φ ↔ ψ))) | |
7 | 6 | bibi1d 310 | . . . 4 ⊢ (¬ φ → ((¬ ψ ↔ χ) ↔ ((φ ↔ ψ) ↔ χ))) |
8 | 5, 7 | syl5bbr 250 | . . 3 ⊢ (¬ φ → (¬ (ψ ↔ χ) ↔ ((φ ↔ ψ) ↔ χ))) |
9 | nbn2 334 | . . 3 ⊢ (¬ φ → (¬ (ψ ↔ χ) ↔ (φ ↔ (ψ ↔ χ)))) | |
10 | 8, 9 | bitr3d 246 | . 2 ⊢ (¬ φ → (((φ ↔ ψ) ↔ χ) ↔ (φ ↔ (ψ ↔ χ)))) |
11 | 4, 10 | pm2.61i 156 | 1 ⊢ (((φ ↔ ψ) ↔ χ) ↔ (φ ↔ (ψ ↔ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: biluk 899 xorass 1308 had1 1402 |
Copyright terms: Public domain | W3C validator |