New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.53 | GIF version |
Description: Theorem *5.53 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.53 | ⊢ ((((φ ∨ ψ) ∨ χ) → θ) ↔ (((φ → θ) ∧ (ψ → θ)) ∧ (χ → θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaob 758 | . 2 ⊢ ((((φ ∨ ψ) ∨ χ) → θ) ↔ (((φ ∨ ψ) → θ) ∧ (χ → θ))) | |
2 | jaob 758 | . . 3 ⊢ (((φ ∨ ψ) → θ) ↔ ((φ → θ) ∧ (ψ → θ))) | |
3 | 2 | anbi1i 676 | . 2 ⊢ ((((φ ∨ ψ) → θ) ∧ (χ → θ)) ↔ (((φ → θ) ∧ (ψ → θ)) ∧ (χ → θ))) |
4 | 1, 3 | bitri 240 | 1 ⊢ ((((φ ∨ ψ) ∨ χ) → θ) ↔ (((φ → θ) ∧ (ψ → θ)) ∧ (χ → θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |