New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.62 | GIF version |
Description: Theorem *5.62 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 21-Jun-2005.) |
Ref | Expression |
---|---|
pm5.62 | ⊢ (((φ ∧ ψ) ∨ ¬ ψ) ↔ (φ ∨ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 404 | . 2 ⊢ (ψ ∨ ¬ ψ) | |
2 | ordir 835 | . 2 ⊢ (((φ ∧ ψ) ∨ ¬ ψ) ↔ ((φ ∨ ¬ ψ) ∧ (ψ ∨ ¬ ψ))) | |
3 | 1, 2 | mpbiran2 885 | 1 ⊢ (((φ ∧ ψ) ∨ ¬ ψ) ↔ (φ ∨ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |