| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ordir | GIF version | ||
| Description: Distributive law for disjunction. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| ordir | ⊢ (((φ ∧ ψ) ∨ χ) ↔ ((φ ∨ χ) ∧ (ψ ∨ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordi 834 | . 2 ⊢ ((χ ∨ (φ ∧ ψ)) ↔ ((χ ∨ φ) ∧ (χ ∨ ψ))) | |
| 2 | orcom 376 | . 2 ⊢ (((φ ∧ ψ) ∨ χ) ↔ (χ ∨ (φ ∧ ψ))) | |
| 3 | orcom 376 | . . 3 ⊢ ((φ ∨ χ) ↔ (χ ∨ φ)) | |
| 4 | orcom 376 | . . 3 ⊢ ((ψ ∨ χ) ↔ (χ ∨ ψ)) | |
| 5 | 3, 4 | anbi12i 678 | . 2 ⊢ (((φ ∨ χ) ∧ (ψ ∨ χ)) ↔ ((χ ∨ φ) ∧ (χ ∨ ψ))) |
| 6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ (((φ ∧ ψ) ∨ χ) ↔ ((φ ∨ χ) ∧ (ψ ∨ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: orddi 839 pm5.62 889 dn1 932 cadan 1392 nchoicelem9 6298 |
| Copyright terms: Public domain | W3C validator |