New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbiran2 | GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ χ |
mpbiran2.2 | ⊢ (φ ↔ (ψ ∧ χ)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (φ ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.2 | . 2 ⊢ (φ ↔ (ψ ∧ χ)) | |
2 | mpbiran2.1 | . . 3 ⊢ χ | |
3 | 2 | biantru 491 | . 2 ⊢ (ψ ↔ (ψ ∧ χ)) |
4 | 1, 3 | bitr4i 243 | 1 ⊢ (φ ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm5.62 889 reueq 3033 ss0b 3580 dfimak2 4298 dfpw2 4327 ltfinex 4464 ssfin 4470 eqpw1relk 4479 ncfinraiselem2 4480 eqtfinrelk 4486 evenodddisjlem1 4515 nnadjoinlem1 4519 tfinnnlem1 4533 dfphi2 4569 dfop2lem1 4573 setconslem2 4732 setconslem4 4734 f1funfun 5263 fores 5278 funfv 5375 otelins3 5792 releqmpt 5808 releqmpt2 5809 fnsex 5832 foundex 5914 enmap2lem1 6063 enmap1lem1 6069 fnce 6176 sbthlem1 6203 sbthlem3 6205 tcfnex 6244 nncdiv3lem2 6276 nchoicelem9 6297 nchoicelem11 6299 |
Copyright terms: Public domain | W3C validator |