NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.74da GIF version

Theorem pm5.74da 668
Description: Distribution of implication over biconditional (deduction rule). (Contributed by NM, 4-May-2007.)
Hypothesis
Ref Expression
pm5.74da.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
pm5.74da (φ → ((ψχ) ↔ (ψθ)))

Proof of Theorem pm5.74da
StepHypRef Expression
1 pm5.74da.1 . . 3 ((φ ψ) → (χθ))
21ex 423 . 2 (φ → (ψ → (χθ)))
32pm5.74d 238 1 (φ → ((ψχ) ↔ (ψθ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ralbida  2629
  Copyright terms: Public domain W3C validator