New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpanlr1 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanlr1.1 | ⊢ ψ |
mpanlr1.2 | ⊢ (((φ ∧ (ψ ∧ χ)) ∧ θ) → τ) |
Ref | Expression |
---|---|
mpanlr1 | ⊢ (((φ ∧ χ) ∧ θ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanlr1.1 | . . 3 ⊢ ψ | |
2 | 1 | jctl 525 | . 2 ⊢ (χ → (ψ ∧ χ)) |
3 | mpanlr1.2 | . 2 ⊢ (((φ ∧ (ψ ∧ χ)) ∧ θ) → τ) | |
4 | 2, 3 | sylanl2 632 | 1 ⊢ (((φ ∧ χ) ∧ θ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |