NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralbida GIF version

Theorem ralbida 2629
Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
ralbida.1 xφ
ralbida.2 ((φ x A) → (ψχ))
Assertion
Ref Expression
ralbida (φ → (x A ψx A χ))

Proof of Theorem ralbida
StepHypRef Expression
1 ralbida.1 . . 3 xφ
2 ralbida.2 . . . 4 ((φ x A) → (ψχ))
32pm5.74da 668 . . 3 (φ → ((x Aψ) ↔ (x Aχ)))
41, 3albid 1772 . 2 (φ → (x(x Aψ) ↔ x(x Aχ)))
5 df-ral 2620 . 2 (x A ψx(x Aψ))
6 df-ral 2620 . 2 (x A χx(x Aχ))
74, 5, 63bitr4g 279 1 (φ → (x A ψx A χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540  wnf 1544   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by:  ralbidva  2631  ralbid  2633  2ralbida  2654  ralbi  2751
  Copyright terms: Public domain W3C validator